BIOTECH100
A Resource Guide to Investing in Biotechnology
Directory - Encyclopedia - Stock Index - Pipeline Drugs 

Biotechnology Encyclopedia

Diabetes

Diabetes mellitus is a medical disorder characterized by varying or persistent hyperglycemia (elevated blood sugar levels), especially after eating. All types of diabetes mellitus share similar symptoms and complications at advanced stages. Hyperglycemia itself can lead to dehydration and ketoacidosis. Longer-term complications include cardiovascular disease (doubled risk), chronic renal failure (it is the main cause for dialysis), retinal damage with eventual blindness, nerve damage and eventual gangrene with risk of amputation of toes, feet, and even legs.

The most important forms of diabetes are due to decreased production of insulin (diabetes mellitus type 1, the first recognized form), or decreased sensitivity of body tissues to insulin (diabetes mellitus type 2, the more common form). The former requires insulin injections, while the latter is generally managed with oral medication and only requires insulin if the tablets are ineffective.

Patient understanding and participation is vital as blood glucose levels change continuously, while successfully keeping blood sugar within normal limits has been compellingly shown to reduce or prevent development of some of the complications of diabetes. Other risk factors that can require addressing to reduce complications are: cessation of smoking, optimizing cholesterol levels, maintaining a stable body weight, controlling high blood pressure and having regular exercise.

Statistics

In 2004, according to the World Health Organization, more than 150 million people worldwide suffer from diabetes. Its incidence is increasing rapidly, and it is estimated that by the year 2025 this number will double. Diabetes mellitus occurs throughout the world, but is more common (especially type 2) in the more developed countries. The greatest increase in prevalence rate is, however, expected to occur in Asia and Africa, where most of the diabetic patients will be seen by 2025. The increase in incidence of diabetes in the developing countries follows the trend of urbanisation and life style changes.

Diabetes is in the top 10, and perhaps the top 5, of the most significant diseases in the developed world, and is gaining in significance (see big killers).

For at least 20 years, diabetes rates in North America have been increasing substantially. In 2002 there were about 18.2 million diabetics in the United States alone. The Centers for Disease Control has termed the change an epidemic. The National Diabetes Information Clearinghouse estimates that diabetes costs $132 billion in the United States alone every year.

Causes and types

The role of insulin

Mechanism of insulin release in normal pancreatic beta cells (ie, glucose dependence). Insulin production doesn't depend on blood glucose levels; insulin is stored pending release
Mechanism of insulin release in normal pancreatic beta cells (ie, glucose dependence). Insulin production doesn't depend on blood glucose levels; insulin is stored pending release

Since insulin is the principal hormone that regulates uptake of glucose into cells (primarily muscle and fat cells) from the blood, deficiency of insulin or its action plays a central role in all forms of diabetes.

Most of the carbohydrates in food are rapidly digested to glucose, the principal sugar in blood. Insulin is produced by beta cells in the pancreas in response to rising levels of glucose in the blood, as occurs after a meal. Insulin makes it possible for most body tissues to remove glucose from the blood for use as fuel, for conversion to other needed molecules, or for storage. Insulin is also the principal control signal for conversion of glucose (the basic sugar unit) to glycogen for storage in liver and muscle cells. Lowered insulin levels result in the reverse conversion of glycogen to glucose when glucose levels fall -- though only in the liver not muscle tissue. Higher insulin level increase many anabolic ("building up") processes such as cell growth, cellular protein synthesis, and fat storage. Insulin is the principal signal in converting many of the bidirectional processes of metabolism from a catabolic to an anabolic direction.

If the amount of insulin produced is insufficient, if cells respond poorly to the effects of insulin (insulin insensitivity or resistance), or if the insulin itself is defective, glucose is not handled properly by body cells (about 2/3 require it) nor stored appropriately in the liver and muscles. The net effect is persistent high levels of blood glucose, poor protein synthesis, and other metabolic derangements.

Type 1 diabetes mellitus

Type 1 diabetes is most commonly diagnosed in children and adolescents, but can occur in adults as well. It is an autoimmune disorder, in which the body's own immune system attacks the beta cells in the Islets of Langerhans of the pancreas, destroying them or damaging them sufficiently to reduce insulin production. The autoimmune attack may be triggered by reaction to an infection, for example by one of the viruses of the Coxsackie virus family. A subtype of type 1 (identifiable by the presence of antibodies against beta cells) develops slowly and so is often confused with Type 2. In addition, a small proportion of type 1 cases has the hereditary condition maturity onset diabetes of the young (MODY).

Some poisons (e.g. certain rat poisons) work by selectively destroying certain types of cells, including pancreatic beta cells, thus producing "artificial" type 1 diabetes. Other pancreatic problems including trauma, pancreatitis or tumors (either malignant or benign) can also lead to loss of insulin production.

Currently, type 1 is treated with insulin injections, lifestyle adjustments, and careful monitoring of blood glucose levels using blood test kits. The treatment must be continued indefinitely. Experimental replacement of beta cells (by transplant) is being investigated in several research programs and may become clinically available in the future.

About 5-10% of all North American cases of diabetes are Type 1 diabetics. The fraction of type 1 diabetics in other parts of the world differs; this is likely due to both differences in the rate of type 1 and differences in the rate of other types, most prominently type 2. Most of this difference is not currently understood.

Formerly, type 1 diabetes was called "childhood" or "juvenile" diabetes or "insulin dependent" diabetes. Each term is a misnomer, especially since the obesity epidemic in recent years has led to increased incidence of type 2 diabetes in children and adolescents in the USA, and insulin is used in some type 2 cases.

Type 2 diabetes mellitus

Type 2 diabetes is characterized by "insulin resistance" as body cells do not respond appropriately when insulin is present. This is a more complex problem than type 1, but is sometimes easier to treat, since insulin is still produced, especially in the initial years. Type 2 may go unnoticed for years in a patient before diagnosis, since the symptoms are typically milder (no ketoacidosis) and can be sporadic. However, severe complications can result from unnoticed type 2 diabetes, including renal failure, and coronary artery disease.

Type 2 diabetes was formerly known by a variety of partially misleading names, including "adult-onset diabetes", "obesity-related diabetes", "insulin-resistant diabetes", or "non-insulin-dependent diabetes" (NIDDM). It may be caused by a number of diseases, such as hemochromatosis and polycystic ovary syndrome, and can also be caused by certain types of medications (e.g. long-term steroid use). About 90-95% of all North American cases of diabetes are type 2, and about 20% of the population over the age of 65 is a type 2 diabetic. The fraction of type 2 diabetics in other parts of the world varies substantially, almost certainly for environmental and lifestyle reasons. There is also a strong inheritable genetic connection in type 2 diabetes: having relatives (especially first degree) with type 2 is a considerable risk factor for developing type 2 diabetes. The majority of patients with type 2 diabetes mellitus are obese - chronic obesity leads to increased insulin resistance that can develop into diabetes, most likely because adipose tissue is a (recently identified) source of chemical signals (hormones and cytokines).

Type 2 is initially treated by changes in diet and through weight loss. This can restore insulin sensitivity, even when the weight lost is modest e.g. around 5 kg (10 to 15 lb). The next step, if necessary, is treatment with oral antidiabetic drugs: the sulphonylureas, metformin, or (if these are insufficient) thiazolidinediones. When these have failed, insulin therapy may be necessary to maintain normal glucose levels.

Type 3 diabetes mellitus

All other specific forms of diabetes, accounting for up to 5% of all diagnosed cases of diabetes, are termed Type 3:

  • Type 3A: genetic defect in beta cells.
  • Type 3B: genetically related insulin resistance.
  • Type 3C: diseases of the pancreas.
  • Type 3D: caused by hormonal defects.
  • Type 3E: caused by chemicals or drugs.

Type 4 diabetes mellitus

Main article: Gestational diabetes mellitus

Type 4 or gestational diabetes mellitus appears in about 2-5% of all pregnancies. It is temporary and fully treatable, but if untreated it may cause problems with the pregnancy. It requires careful medical supervision during the pregnancy. In addition, about 20-50% of these women go on to develop type 2 diabetes.

Genetics

Both type 1 and type 2 diabetes are at least partly inherited. Type 1 diabetes appears to be triggered by infection, stress, or environmental factors (e.g. exposure to a causative agent). There is a genetic element in the susceptibility of individuals to some of these triggers which has been traced to particular HLA genotypes (i.e. genetic "self" identifiers used by the immune system). However, even in those who have inherited the susceptibility, type 1 diabetes mellitus seems to require an environmental trigger. A small proportion of type 1 diabetics carry a mutation that causes maturity onset diabetes of the young (MODY).

There is an even stronger inheritance pattern for Type 2 diabetes; those with type 2 ancestors or relatives have very much higher chances of developing Type 2. It is also often connected to obesity, which is found in approximately 85% of (North American) patients diagnosed with that form of the disease, so inheriting a tendency toward obesity seems also to contribute. Age is also thought to be a contributing factor, as most type 2 patients in the past were older. The exact reasons for these connections are unknown.

Diagnosis

Signs and symptoms

Type 2 diabetes almost always has a slow onset (often years), but in type 1, particularly in children, onset may be quite fast (weeks or months). Early symptoms of type 1 diabetes are often polyuria (frequent urination) and polydipsia (increased thirst, and consequent increased fluid intake). There may also be weight loss (despite normal or increased eating), increased appetite, and irreduceable fatigue. These symptoms may also manifest in Type 2 diabetes in patients who present with frank poorly controlled diabetes.

Thirst develops because of osmotic effects — sufficiently high glucose (above the 'renal threshold') in the blood is excreted by the kidneys but this requires water to carry it and causes increased fluid loss, which must be replaced. The lost blood volume will be replaced from water held inside body cells, causing dehydration.

Another common presenting symptom is altered vision. Prolonged high blood glucose causes changes in the shape of the lens in the eye, leading to blurred vision and, perhaps, a visit to an optometrist. All unexplained quick changes in eyesight should force a fasting blood glucose test. These are now quick (less than 5 minutes total), inexpensive (materials less than US$1), and can be safely performed by almost anyone with trivial training.

Especially dangerous symptoms in diabetics include the smell of acetone on the patient's breath (a sign of ketoacidosis), Kussmaul breathing (a rapid, deep breathing), and any altered state of consciousness or arousal (hostility and mania are both possible, as is confusion and lethargy). The most dangerous form of altered consciousness is the so-called "diabetic coma" which produces unconsciousness. Early symptoms of impending diabetic coma include polyuria, nausea, vomiting and abdominal pain, with lethargy and somnolence a later development, progressing to unconsciousness and death if untreated.

Diagnostic approach

The diagnosis of type 1 diabetes and many cases of type 2 is usually prompted by recent-onset symptoms of excessive urination (polyuria) and excessive thirst (polydipsia), often accompanied by weight loss. These symptoms typically worsen over days to weeks; about 25% of people with new type 1 diabetes have developed a degree of diabetic ketoacidosis by the time the diabetes is recognized.

The diagnosis of other types of diabetes is made in many other ways. The most common are (1) health screening, (2) detection of hyperglycemia when a doctor is investigating a complication of longstanding, unrecognized diabetes, and less commonly (3) new signs and symptoms attributable to the diabetes.

  1. Diabetes screening is recommended for many types of people at various stages of life or with several different risk factors. The screening test varies according to circumstances and local policy and may be a random glucose, a fasting glucose and insulin, a glucose 2 hours after 75 g of glucose, or a formal glucose tolerance test. Many health care recommendations for adults recommend universal screening at age 40 or 50 years, and sometimes occasionally thereafter. Earlier screening is recommended for those with risk factors such as obesity, family history of diabetes, high risk ethnicity (Hispanic [Latin American], American Indian, African American, Pacific Island, and South Asian ancestry).
  2. Many medical conditions are associated with a higher risk of various types of diabetes and warrant screening. A partial list includes: high blood pressure, elevated cholesterol levels, coronary artery disease, past gestational diabetes, polycystic ovary syndrome, chronic pancreatitis, hepatic steatosis (fatty liver), cystic fibrosis, several mitochondrial neuropathies and myopathies, myotonic dystrophy, Friedreich's ataxia, some of the inherited forms of neonatal hyperinsulinism and many others. Risk of diabetes is higher with chronic use of several medications, including high dose glucocorticoids, some chemotherapy agents (especially L-asparaginase), and some of the antipsychotics and mood stabilizers (especially phenothiazines and some atypical antipsychotics).
  3. Diabetes is often detected when a person suffers a problem frequently caused by diabetes, such as a heart attack, stroke, neuropathy, poor wound healing or a foot ulcer, certain eye problems, certain fungal infections, or delivering a baby with macrosomia or hypoglycemia.

Criteria for diagnosis

Diabetes mellitus is characterized by recurrent or persistent hyperglycemia, and is diagnosed by demonstrating any one of

  1. two fasting plasma glucose levels above 7 mmol/l (125 mg/dl) on different days;
  2. plasma glucose above 11 mmol/l (200 mg/dl) two hours after a 75 g glucose load; or
  3. symptoms of diabetes and a random glucose above 11 mmol/l (200 mg/dl).
  4. elevated glucose bound to hemoglobin, HbA1c, of 6.0% or higher (2003 revised US standard); this is a screening and treatment-tracking test reflecting average blood glucose levels over the preceding 90 days (approximately).

Diabetic ketoacidosis and coma

See also the more detailed articles diabetic ketoacidosis and diabetic coma

Diabetic ketoacidosis (DKA) is an acute, dangerous complication in diabetes and is always a medical emergency. If left without prompt proper treatment, patients with diabetic ketoacidosis have substantial chance of death.

DKA occurs more commonly in Type 1 diabetics during periods of extreme hyperglycemia and insufficient insulin though it can occur rarely in Type 2 diabetics. Sometimes patients with Type 1 diabetes mellitus present for the first time with DKA. Other times, patients with Type 1 diabetes have been sent into DKA because their glycemic control has been upset by other factors which may include failure to institute proper insulin therapy or severe infection.

In situations where there is a severe deficiency in insulin levels, the body switches to fat metabolism, a mechanism which actually exists to protect the organs during periods of starvation, as glucose is not available to be taken up due to the lack of insulin even though blood levels of glucose are high. Ketones are produced from fats, partly because the brain can utilize ketones for energy as they can pass the blood-brain barrier. As the level of available glucose for the brain (and other organs) runs low due to the persistent low levels of insulin - despite the rising levels of serum glucose as a byproduct of the fat metabolism - more and more fats are metabolized releasing more and more ketones (acetone, acetoacetate and beta-hydroxybutyrate).

Runaway accumulation of these ketone bodies results in metabolic acidosis as pH buffers in the serum are used up. At the same time, as rising levels of glucose and ketones increase the osmolality of the serum, the hyperglycemic state initially encourages the patient's kidneys to produce more urine, causing the body to lose water and electrolytes such as potassium and phosphate, leading to dehydration and hypokalemia.

On presentation to hospital, the patient in DKA is typically dehydrated and hypokalemic (deficient in potassium). Urgent intravenous fluid resuscitation, potassium replacement and insulin replacement should be instituted.

Hyperosmotic diabetic coma

Hyperosmotic diabetic coma is another acute problem associated with improper management of diabetes mellitus. It has some symptoms in common with DKA, but a different cause, and requires different treatment. In anyone with very high blood glucose levels (usually considered to be above 300 mg/dl) water will be osmotically driven out of cells into the blood. The kidneys will also be "dumping" glucose into the urine, resulting in concomitant loss of water, causing an increase in blood osmolality. The osmotic effect of high glucose levels combined with the loss of water will eventually result in such a high serum osmolality that the body's cells may become directly affected as water is drawn out from them. Electrolyte imbalances are also common. This combination of changes, especially if prolonged, will result in symptoms similar to ketoacidosis, including loss of consciousness. As with DKA, urgent medical treatment is necessary. This is the diabetic coma to which type 2 diabetics are prone; it is less common in type 1 diabetics.

Hypoglycemia

Hypoglycemia in diabetic patients almost always arises as a result of poor management of the disease either from too much or poorly timed insulin or oral hypoglycemics or too much exercise, not enough food, or poor timing of either. If blood glucose levels are low enough, the patient may become agitated, sweaty, and have many symptoms of sympathetic activation of the autonomic nervous system - they may experience feelings similar to dread and immobilized panic. Consciousness can be altered, or even lost, in extreme cases, leading to coma and/or seizures or even death and brain damage. Experienced diabetics can often recognise the symptoms early on - all diabetics should always carry something sugary to eat or drink as these symptoms can be rapidly reduced if treated early enough. In the case of children, this can be a type of candy disliked by the patient, to prevent concerns about unnecessary use.

Other ways of treating hypoglycemia include an injection of glucagon which causes the liver to convert its internal stores of glycogen to be released as glucose into the blood. Oral or intravenous dextrose can also be given. In most cases, recovery is rapid and troublefree. Longstanding hypoglycemia may require hospital admission to allow supervised recovery and adjustment of diabetic medications.

Long-term complications

Among the major risks of the disorder are chronic problems affecting multiple organ systems which will eventually arise in patients with poor glycemic control. Many of these arise from damage to the blood vessels. These illnesses can be divided into those arising from large blood vessel diseases, macroangiopathy, and those arising from small blood vessel disease, microangiopathy. Interestingly, small vessel disease is minimized by tight blood glucose control, but large vessel disease is unaffected by tight blood glucose control.

Diabetes mellitus is the most common cause of adult kidney failure worldwide. It also the most common cause of amputation in the US, usually toes and feet, often as a result of gangrene, and almost always as a result of peripheral vascular disease. Retinal damage (from microangiopathy) makes it the most common cause of blindness among non-elderly adults in the US.

Treatment

Diabetes is a chronic disease with no cure (except experimentally in type 1 diabetics) as of 2004, but it can almost always be managed effectively. Management of this disease may include lifestyle modifications such as losing weight, diet and exercise to long-term use of oral hypoglycemics or insulin therapy. Nowadays, the goal for diabetics is to avoid or minimize chronic diabetic complications, as well as to avoid acute problems of hyperglycemia or hypoglycemia.

Adequate control of diabetes leads to a lower risk of the complications of uncontrolled diabetes which include kidney failure (requiring dialysis or transplant), blindness, heart disease and limb amputation.

There is emerging solid evidence that full-blown diabetes mellitus type 2 can be evaded in those with only mildly impaired glucose tolerance6.

Patients with type 1 diabetes mellitus require direct injection of insulin as their bodies cannot produce enough (or even any) insulin. As of 2004, there is no other clinically available form of insulin administration other than injection for patients with type 1: injection can be done by insulin pump, by jet injector, or any of several forms of hypodermic needle. There are several insulin application mechanisms under experimental development as of 2004.

For type 2 diabetics, diabetic management consists of a combination of diet, exercise, and weight loss, in any achievable combination depending on the patient. Patients who have poor diabetic control after lifestyle modifications are typically placed on oral hypoglycemics. Some Type 2 diabetics eventually fail to respond to these and must proceed to insulin therapy.

Patient education and compliance with treatment is very important in managing the disease. Improper use of medications and insulin can be very dangerous causing hypo- or hyper-glycemic episodes.

Insulin therapy requires close monitoring and a great deal of patient education, as improper administration is quite dangerous. For example, when food intake is reduced, less insulin is required. A previously satisfactory dosing may be too much if less food is consumed causing a hypoglycemic reaction if not intelligently adjusted. In addition, exercise decreases insulin requirements as exercise increases glucose uptake by body cells whose glucose uptake is controlled by insulin. And vice versa. In addition, there are available several types of insulin with varying times of onset and duration of action.

Monitoring

An older style portable blood glucose meter. A blood sample is applied to an inserted strip (see image below) and color changes caused by reaction with blood glucose are measured by the meter.
An older style portable blood glucose meter. A blood sample is applied to an inserted strip (see image below) and color changes caused by reaction with blood glucose are measured by the meter.

Optimal management of diabetes involves patients measuring and recording their own blood glucose testing at home. By keeping a diary of their own blood glucose measurements and noting the effect of food and exercise, patients can modify their lifestyle to better control their diabetes. For patients on insulin, patient involvement is important in achieving effective dosing and timing.

Relying on their own perceptions of symptoms of hyperglycemia or hypoglycemia is usually unsatisfactory as mild to moderate hyperglycemia causes no obvious symptoms in nearly all patients. Other considerations include the fact that, while food takes several hours to be digested and absorbed, insulin administration can have glucose lowering effects for as little as 2 hours or 24 hours or more (depending on the nature of the insulin preparation used and individual patient reaction). In addition, the onset and duration of the effects of oral hypoglycemic agents vary from type to type and from patient to patient.

A useful test that can be done in a doctor's clinic is the measurement of blood HbA1C levels. This is the ratio of glycosylated red blood cells in relation to the total number of red blood cells. Persistent raised plasma glucose levels causes the proportion of these cells to go up. This is a test that measures the average amount of diabetic control over a period of about 3 months (the average red blood cell lifetime). In the non-diabetic, the HbA1C level ranges from 4.0-6.4%; patients with diabetes mellitus who manage to keep their HbA1C level below 7.0% are considered to have good glycaemic control.

Regular blood testing especially more so in type 1 diabetics is essential to keep a tight reign on the symptoms of the disease. There are many (at least 20+) different types of blood monitoring devices available on the market today, not every meter suits all patients and it is a specific matter of choice for the patient to find a meter that they personally find comfortable to use. The principle of the devices is the virtually the same, a small blood sample is collected by the patient by self-production using a lancing device (a sterile pointed needle) the blood is usually collected at the end point to a test strip. This test strip contains various chemicals which when the blood is applied creates a small electrical charge between two contacts. This charge will vary dependent on the glucose levels within the blood and its effect on the chemicals contained within the strip. In older glucose meters, the drop of blood is placed on top of a strip. A chemical reaction occurs and the strip changes color. The meter then measures the color of the strip optically.

It is this level that is measured and a result in either mg/dL (milligrams per deciliter in the USA) or mmol/L (millimoles per litre in Europe) of blood. The average normal person should have a glucose level of around 4.5 to 7.0 mmol/L In the diabetic patient, more specifically type 2 patients, it is important to maintain good glucose control, usually 1-2 hours after a meal aiming for a level of <10.0 mmol/L.

A level of <3.8 mmol/L is usually described as a hypoglycaemic attack. Most diabetics 'know' when they're going to go hypo and usually are able to eat some food or drink something sweet to raise levels. It is important to remember though, that a patient who is hyperglycaemic (high glucose) can also have a hypo under certain conditions i.e. not eating regularly, or strenuous exercise, followed by fatigue.

Levels greater than 13-15 mmol/L should be monitored closely and the patient is advised to seek urgent medical attention as soon as possible if this continues to rise after 2-3 tests.

Hyperglycaemia is not as easy to detect as hypoglycaemia and usually happens over a period of days rather than hours or minutes. If left untreated this can result in diabetic coma and death.

A blood glucose test strip for an older style (ie, optical color sensing) monitoring system

Prolonged and elevated levels of glucose in the blood, which is left unchecked and untreated will, over time, result in serious diabetic complications and sometimes even death. It is therefore highly important that a diabetic patient checks their blood levels either daily or every few days to see what levels they are achieving over a given period of time. There is also computer software for the PC which is available from blood testing manufacturers which can display results and trends over time. Type 1 patients will have to check on a more regular daily basis due to insulin therapy which is a fine art to master.

These results are especially useful for the diabetic to present to their doctor or physician in the monitoring and control of the disease. Failure to maintain a strict regimen of testing can accelerate symptoms of the condition, and it is therefore imperative that any diabetic patient strictly monitor their glucose levels regularly.

Public health, policy and health economics

The Declaration of St Vincent was the result of international efforts to improve the care accorded to diabetics. Doing so is important if only economically. Diabetes is enormously expensive for healthcare systems and governments. In North America, it is the largest single non-traumatic cause in adults of amputation, blindness, and dialysis, all extremely expensive events.

Work in the Puget Sound area of North America (by the health organization Group Health) shows that, over its large and varied patient population, specially retaining medical information on diabetic patients, keeping it up to date, and basing their continuing care on that data reduced total healthcare costs for those patients by US$1000 per year per patient for the rest of life. Recognition of this reality drove the Hawkes Bay initiative which established such a system, and resulted in various activities throughout the world including the Black Sea Telediab project which produced elements of a distributed diabetic record and management system as an open source computer program.

History

Although diabetes has been recognized since antiquity, and treatments were known since the Middle Ages, the elucidation of the pathogenesis of diabetes occurred mainly in the 20th century7.

Until 1922, when insulin was first discovered and made clinically available, a clinical diagnosis of diabetes was an invariable death sentence, more or less quickly. Non-progressing type 2 diabetics almost certainly often went undiagnosed then; many still do.

The discovery of the role of the pancreas in diabetes is generally credited to Joseph Von Mering and Oskar Minkowski, two European researchers who, in 1889, found that when they completely removed the pancreas of dogs, the dogs developed all the signs and symptoms of diabetes and died shortly afterward. In 1910, Sir Edward Albert Sharpey-Schafer of Edinburgh in Scotland suggested diabetics were deficient in a single chemical that was normally produced by the pancreas - he proposed calling this substance insulin.

The endocrine role of the pancreas in metabolism, and indeed the existence of insulin, was not fully clarified until 1921, when Frederick Grant Banting and Charles Herbert Best repeated the work of Von Mering and Minkowski but went a step further and managed to show that they could reverse the induced diabetes in dogs by giving them an extract from the pancreatic islets of Langerhans of healthy dogs8. They went on to isolate the hormone insulin from bovine pancreases at the University of Toronto in Canada.

This led to the availability of an effective treatment - insulin injections - and the first clinical patient was treated in 1922. For this, Banting et al received the Nobel Prize in Physiology or Medicine in 1923. The two researchers did not patent their discovery and insulin therapy rapidly spread around the world.

The distinction between what is now known as type 1 and type 2 diabetes was made by Sir Harold Percival (Harry) Himsworth in 1935; he published his findings in January 1936 in The Lancet9.

Other landmark discoveries7 include:

Etymology

"Diabetes" is a Greek word meaning "a passer through; a siphon". "Mellitus" comes from the Greek word "sweet". Apparently, the Greeks named it thus because the excessive amounts of urine diabetics produce (when blood glucose is too high) attracted flies and bees because of the glucose content. The ancient Chinese tested for diabetes by observing whether ants were attracted to a person's urine; medieval European doctors tested for it by tasting the urine themselves, a scene occasionally depicted in Gothic reliefs.

It is probably important to note that passing abnormal amounts of urine is a symptom shared by several diseases (most commonly of the kidneys), and the single word diabetes is applied to many of them. The most common of them are diabetes insipidus and the subject of this article, diabetes mellitus.

References

  1. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977-86. Fulltext (http://content.nejm.org/cgi/content/full/329/14/977). Medline abstract (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8366922) (PMID 8366922).
  2. World Health Organisation, Department of Noncommunicable Disease Surveillance. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Geneva: WHO, 1999 (PDF (http://whqlibdoc.who.int/hq/1999/WHO_NCD_NCS_99.2.pdf))
  3. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-53. Medline abstract (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9742976) (PMID 9742976).
  4. Conditions in Occupational Therapy: effect on occupational performance. Edited by Ruth A. Hansen and Ben Atchison. Baltimore: Lippincott Williams & Williams, 2000;298-309. ISBN 0-683-30417-8.
  5. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003;361(9374):2005-16. Medline abstract (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12814710) (PMID 12814710).
  6. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344:1343-50. Medline abstract (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11333990) (PMID 11333990).
  7. Patlak M. New Weapons to Combat an Ancient Disease: Treating Diabetes. FASEB J 2002;16:1853E (http://www.fasebj.org/cgi/content/full/16/14/1853e). Medline abstract (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12468446) (PMID 12468446).
  8. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus. Canad Med Assoc J 1922;12:141-146.
  9. Himsworth HP. Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. Lancet 1936;i:127-130.

See also

External links

 
Biotech100 Index
· What are the Requirements to be listed in the Biotech100 Index?
 Biotech100 list of companies
· Pipeline drugs for the Biotech100


Clinical Trials
· What is a Clinical Trial?
·Phase I ,-- Phase II, -- PhaseIII
·What is Randomized Control?
 What is a Double Blind Experiment?
·What is the role of the FDA?


Investing in Stocks
· Small Cap Stocks
· Stocks and Bonds
· Biotech100 Index


Sponsored Links


Careers and Employment
· Biotechnology and Pharmaceutical
· What are the Fastest Growing Careers?

Key Biotech Terms


Google
 
Web www.biotech100.com
SEARCH THE BIOTECH100 WEBSITE
  
     

 
All text is available under the terms of the GNU Free Documentation License (see Copyrights for details). Disclaimers. Wikipedia is powered by MediaWiki, an open source wiki engine..
 


Copyright © 2005 BIOTECH100.COM. All rights reserved.

email: info@biotech100.com